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THE PROBLEM OF THE FREE CONVECTION NEAR
A HORIZONTAL CYLINDER WITH CONSTANT
THERMAL FLUX AT THE SURFACE
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Using Shvets's method we solve the problem of the stationary free convection of a viscous
fluid near a horizontal cylinder with constant thermal flux at the surface. From the solu-
tion we find the thickness of the laminar boundary layer at the cylinder and the tempera-
ture and velocity distributions in it.

The problem of the stationary free thermal convection near a heated horizontal cylinder of infinite
length in a viscous fluid was considered in [1, 2] for the case when the heat flux is specified at the surface
of the cylinder. In [1] the solution was reduced to the numerical integration of the ordinary differential
equations obtained from the equations of free convection in the boundary layer approximation by expanding
the stream function and the temperature in series in powers of x. In the second paper the problem was
solved by replacing the differential equations of free convection by integral equations and then representing
the velocity and temperature distributions in the boundary layer as polynomials with three terms in powers
of y/ 8, and numerically integrating one of the resulting equations.

Below we give the solution of the problem by the method of successive approximations in analytic
form for the case of constant thermal flux. We assume that near the cylinder there is a laminar boundary
layer.

The equations for the conservation of momentum, energy, and mass for a laminar boundary layer
[3] near a horizontal cylinder in nondimensional form are:
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As the boundary conditions we take
y=0:

u=v=0, -——=—1, (4
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We shall solve Egs. (1)-(3) with the boundary conditions (4), (5) using the approximate method of
Shvets [4]. For the i-th approximation we have
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To determine the thickness of the boundary layer in the i~th approximation we use the condition that there
is no thermal flux at the outer boundary of the layer
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For the zero-order approximation we take
u=0, T=0.

Then the equations of the first approximation are obtained in the form
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Solving these simultaneously, with the above boundary conditions, we obtain equations for the temperature
and velocity in the first approximation
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Substituting these results again in the left sides of Egs. (6) and (7), we obtain the second approxi-
mation equations. Solving these simultaneously, with the boundary conditions, we obtain equations for the
temperature and velocity distributions in the boundary layer in the second approximation. For the tem-
perature we have
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Substituting the latter in (8) and carrying out the necessary operations, we obtain an equation for
the thickness of the boundary layer
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which, using the substitution z = 6% can be linearized:
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The solution of this equation, assuming that the thickness of the boundary layer is finite at the lower
generator of the cylinder (x = 0) has the form

§— 2.14.Pr ( —_L)'”' . (11)
sinx
NOTATION

Xy is the coordinate measured from the lower generator along the arc of the circum-

ference of the cylinder cross section;
Vi is the coordinate measured along the normal to the surface of the cylinder;
R is the cylinder radius; '
u is the velocity component in the x,~direction;
vy is the velocity component in the y;-direction;
T is the temperature;
Ty is the temperature of the undisturbed fluid;
q is the specific thermal flux;
o is the thickness of the boundary layer;
Gr* =qgBR4/A®  is the modified Grashof number;
Pr=v/a is the Prandtl number;
v ~ is the kinematic viscosity coefficient;
A is the thermal conductivity;
a is the thermal diffusivity;
8 is the coefficient of volume expansion;
g is the acceleration due to gravity.
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